Answer:
Option D
Explanation:
Given a system of linear equation is $x+\lambda y-z=\alpha, hx-y-z=\alpha, x+y-\lambda z=0$
Note that given system will have a non trivial solution only if determined of coefficient matris is zero, i.e,
$\Rightarrow 1(\lambda+1)-\lambda (-\lambda^{2}+1)-1(\lambda+1)=0$
$\Rightarrow \lambda+1+\lambda^{2}-\lambda -\lambda-1=0$
$\Rightarrow \lambda+1+\lambda^{2}-\lambda -\lambda-1=0$
$\Rightarrow \lambda^{3}-\lambda=0=\lambda(\lambda^{2}-1)=0$
$\Rightarrow \lambda=0 or \lambda=\pm 1$
Hence , given system of linear equation has a non trivial solution for exactly three values of λ