Answer:
Option D
Explanation:
Let z=2+3isinθ1−2isinθ
is purely
imaaginary Then , we have Re(z)=0
NOw conside z=2+3isinθ1−2isinθ
z=(2+3isinθ)(1+2isinθ)(1−2isinθ)(1+2isinθ)
z=(2+4isinθ+3isinθ+6i2sin2θ)(12−(2isinθ)2
z=(2+7isinθ−6sin2θ)(1+4sin2θ)
z=(2−6sin2θ)(1+4sin2θ)+i7sinθ(1+4sin2θ)
Re(z)=0
(2−6sin2θ)(1+4sin2θ)=0
2=6sin2θ
⇒sin2θ=1√3
⇒sin2θ=±1√3
⇒θ=sin−(±1√3)=±sin−(1√3)