1)

A value of θ for which 2+3isinθ12isinθ is purely imaginary , is


A) π3

B) π6

C) sin1(34)

D) sin1(13)

Answer:

Option D

Explanation:

Let z=2+3isinθ12isinθ

is purely

 imaaginary Then , we have Re(z)=0

 NOw conside z=2+3isinθ12isinθ

   z=(2+3isinθ)(1+2isinθ)(12isinθ)(1+2isinθ)

 z=(2+4isinθ+3isinθ+6i2sin2θ)(12(2isinθ)2

   z=(2+7isinθ6sin2θ)(1+4sin2θ)

  z=(26sin2θ)(1+4sin2θ)+i7sinθ(1+4sin2θ)

 Re(z)=0

   (26sin2θ)(1+4sin2θ)=0

   2=6sin2θ

  sin2θ=13

sin2θ=±13

θ=sin(±13)=±sin(13)