Answer:
Option C
Explanation:
We have , $f(x)+2f(\frac{1}{x})=3x,x\neq 0.....(i)$
On replaceing x by 1/x in the above eq (i)
we get $f(\frac{1}{x})+2f(x)=\frac{3}{x}$
$\Rightarrow 2f(x)+2f(\frac{1}{x})=\frac{3}{x}$ .......(ii)
On multiplying Eq(ii) by 2 and substracting Eq(i) from Wq(ii), we get
$4f(x)+2f(\frac{1}{x})=\frac{6}{x}$
$\frac{f(x)+2f(\frac{1}{x})=3x}{3f(x)=\frac{6}{x}-3x}$
$\Rightarrow f(x)=\frac{2}{x}-x$
now consider, f(x)=f(-x)
$\Rightarrow \frac{2}{x}-4=-\frac{2}{x}+x$
$\Rightarrow \frac{4}{x}=2x$
$\Rightarrow 2x^{2}=4\Rightarrow x^{2}=2$
$\Rightarrow x=\pm \sqrt{2}$
Hence, S contains exactly two elements