Answer:
Option C
Explanation:
At distance x from the bottom
$v=\sqrt{\frac{T}{\mu}}=\sqrt{\frac{(\frac{mgx}{L})}{(\frac{m}{L})}}=\sqrt{gx}$
$\therefore \frac{\text{d}x}{\text{d}t}=\sqrt{x}\sqrt{g}$
$\Rightarrow \int_{0}^{L}x^{-\frac{1}{2}} dx=\sqrt{g}\int_{0}^{t} dt$
$\Rightarrow [\frac{x^{-\frac{1}{2}}}{(\frac{1}{2})}\mid_0^L]=\sqrt{g}.t$
$\Rightarrow t=\frac{2\sqrt{L}}{\sqrt{g}}$
$\Rightarrow t=2\sqrt{\frac{20}{10}}=2\sqrt{2} s$