Answer:
Option A
Explanation:
Given, [xx21+x32x4x21+8x33x9x21+27x3]=10
= ⇒x.x2[111+x3241+8x3391+27x3]=10
Apply R2→R2−2R1 and R3→R3−3R1
we get,
x3[111+x302−1+6x306−2+24x3]=10
⇒ x3[26x3−1624x3−2]=10
⇒ x3(48x3−4−36x3+6)=10
⇒ 12x6+2x3=10
⇒ 6x6+x3−5=0
⇒ x3=56,−1
∴ x=(56)1/3,−1
Hence, the number of real solutions is 2