Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

Let z=1+3i2 , where   i=1  , and  r,sϵ(1,2,3). Let  P=[(z)rz2sz2szr]  and  I be the identity matrix of  order2.Then, the total number of ordered pairs (r,s) for which   p2=I is


A) 0

B) 1

C) 2

D) 3

Answer:

Option B

Explanation:

Here,

z=1+3i2

     P=[(ω)rω2sω2sωr]

   P2=[(ω)rω2sω2sωr][(ω)rω2sω2sωr]

         =[ω2r+ω4sωr+2s[(1)r+1ωr+2s[(1)r+1ω4s+ω2r]

Given,           P2=1

       ω2r+ω4s=1

  and    ωr+2s[(1)r+1]=0

Since,      rϵ(1,2,3)  and  (1)r+1=0

          r={1,3}

Also,   ω2r+ω4r=1

  If r=1  . then  ω2+ω4s=1

 which is only possible , when s=1

As,    ω2+ω4=1

    r=1, s=1

  Again, if r=3, then

ω6+ω4s=1

  ω4s=2  [ never possible ]

         r3

   (r,s) =(1,1) is the only solution.

 Hence , the total  number of ordered pairs is 1.