Answer:
Option B
Explanation:
Here,
$z=\frac{-1+\sqrt{3}i}{2}$ =ω
$\because$ $P= \begin{bmatrix}(-\omega)^{r} & \omega^{2s} \\\omega^{2s} & \omega^{r}\end{bmatrix}$
$P^{2}=\begin{bmatrix}(-\omega)^{r} & \omega^{2s} \\\omega^{2s} & \omega^{r} \end{bmatrix} \begin{bmatrix}(-\omega)^{r} & \omega^{2s} \\\omega^{2s} & \omega^{r} \end{bmatrix}$
$=\begin{bmatrix}\omega^{2r}+\omega^{4s} & \omega^{r+2s}[(-1)^{r} +1\\\omega^{r+2s}[(-1)^{r}+1 & \omega^{4s}+\omega^{2r} \end{bmatrix}$
Given, $P^{2}=-1$
$\therefore$ $\omega^{2r}+\omega^{4s}=-1$
and $\omega^{r+2s}[(-1)^{r}+1]=0$
Since, $r\epsilon (1,2,3)$ and $(-1)^{r}+1=0$
$\Rightarrow$ r={1,3}
Also, $\omega^{2r}+\omega^{4r}=-1$
If r=1 . then $\omega^{2}+\omega^{4s}=-1$
which is only possible , when s=1
As, $\omega^{2}+\omega^{4}=-1$
$\therefore$ r=1, s=1
Again, if r=3, then
$\omega^{6}+\omega^{4s}=-1$
$\Rightarrow$ $\omega^{4s}=-2$ [ never possible ]
$\therefore$ $r\neq 3$
$\Rightarrow$ (r,s) =(1,1) is the only solution.
Hence , the total number of ordered pairs is 1.