Answer:
Option B
Explanation:
Here,
z=−1+√3i2 =ω
∵ P=[(−ω)rω2sω2sωr]
P2=[(−ω)rω2sω2sωr][(−ω)rω2sω2sωr]
=[ω2r+ω4sωr+2s[(−1)r+1ωr+2s[(−1)r+1ω4s+ω2r]
Given, P2=−1
∴ ω2r+ω4s=−1
and ωr+2s[(−1)r+1]=0
Since, rϵ(1,2,3) and (−1)r+1=0
⇒ r={1,3}
Also, ω2r+ω4r=−1
If r=1 . then ω2+ω4s=−1
which is only possible , when s=1
As, ω2+ω4=−1
∴ r=1, s=1
Again, if r=3, then
ω6+ω4s=−1
⇒ ω4s=−2 [ never possible ]
∴ r≠3
⇒ (r,s) =(1,1) is the only solution.
Hence , the total number of ordered pairs is 1.