Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

Let  α,βϵR   be such that limx0x2sin(βx)αxsinx=1   Then, 

 6(α+β)  equals 


A) 8

B) 5

C) 6

D) 7

Answer:

Option D

Explanation:

Here,   limx0x2sin(βx)αxsinx=1

    limx0x2[βx(βx)33!+(βx)55!.....]αx[xx33!+x55!......] =1

     limx0x3[ββ3x23!+β5x45!.....](α1)x+x33!+x55!....=1

Limits exist only,

   when  , α1=0

     α=1             ............(i)

    limx0x3[ββ3x23!+β5x45!.....]x3[13!x25!....]=1

     6β=1          ........(ii)

  From Eq .(i) and (ii),  we get   6(α+β)=6α+6β

                      =6+1= 7