Loading [MathJax]/jax/element/mml/optable/MathOperators.js


1)

Let  α,βϵR   be such that limx0x2sin(βx)αxsinx=1   Then, 

 6(α+β)  equals 


A) 8

B) 5

C) 6

D) 7

Answer:

Option D

Explanation:

Here,   limx0x2sin(βx)αxsinx=1

    limx0x2[βx(βx)33!+(βx)55!.....]αx[xx33!+x55!......] =1

     limx0x3[ββ3x23!+β5x45!.....](α1)x+x33!+x55!....=1

Limits exist only,

   when  , α1=0

     α=1             ............(i)

    \lim_{x \rightarrow 0}\frac{x^{3}\left[ \beta-\frac{\beta^{3}x^{2}}{3!}+\frac{\beta^{5}x^{4}}{5!}- .....\right]}{x^{3\left[\frac{1}{3!}-\frac{x^{2}}{5!}-  ....\right]}}=1

 \Rightarrow    6\beta=1          ........(ii)

  From Eq .(i) and (ii),  we get   6(\alpha+\beta)=6\alpha+6\beta

                      =6+1= 7