Answer:
Option D
Explanation:
Here, limx→0x2sin(βx)αx−sinx=1
⇒ limx→0x2[βx−(βx)33!+(βx)55!−.....]αx−[x−x33!+x55!−......] =1
⇒ limx→0x3[β−β3x23!+β5x45!−.....](α−1)x+x33!+x55!−....=1
Limits exist only,
when , α−1=0
⇒ α=1 ............(i)
∴ limx→0x3[β−β3x23!+β5x45!−.....]x3[13!−x25!−....]=1
⇒ 6β=1 ........(ii)
From Eq .(i) and (ii), we get 6(α+β)=6α+6β
=6+1= 7