Answer:
Option D
Explanation:
Here, limx→0x2sin(βx)αx−sinx=1
⇒ limx→0x2[βx−(βx)33!+(βx)55!−.....]αx−[x−x33!+x55!−......] =1
⇒ limx→0x3[β−β3x23!+β5x45!−.....](α−1)x+x33!+x55!−....=1
Limits exist only,
when , α−1=0
⇒ α=1 ............(i)
∴ \lim_{x \rightarrow 0}\frac{x^{3}\left[ \beta-\frac{\beta^{3}x^{2}}{3!}+\frac{\beta^{5}x^{4}}{5!}- .....\right]}{x^{3\left[\frac{1}{3!}-\frac{x^{2}}{5!}- ....\right]}}=1
\Rightarrow 6\beta=1 ........(ii)
From Eq .(i) and (ii), we get 6(\alpha+\beta)=6\alpha+6\beta
=6+1= 7