Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

Let m be the smallesr positive integer such that the coefficient of  x2  in the  expansion of (1+x)2+(1+x)3+.....+(1+x)49+(1+mx)50   is

   (3n+1)51C3  for some positive integer  n, Then the value of n is


A) 5

B) 7

C) 4

D) 8

Answer:

Option A

Explanation:

Coefficient of x2  in the expansion of

  {(1+x)2+(1+x)3+.....+(1+x)49+(1+mx)50

    2C2+3C2+4C2+......+49C2+50C2.m2

=(3n+1).51C3

     50C3+50C2m2=(3n+1).51C3

[   rCr+r+1Cr+.....+nCr=n+1Cr+1  ]

     50×49×483×2×1+50×492×m2

=(3n+1)51×50×493×2×1

m2=51n+1

    Minimum  value of  m2   for which (51n+1)  is integer (perfect square) for n=5.

    m2=51×5+1

     m2=256

         m=16  and n=5    

Hence, the value of n is 5