Answer:
Option A
Explanation:
Coefficient of x2 in the expansion of
{(1+x)2+(1+x)3+.....+(1+x)49+(1+mx)50}
⇒ 2C2+3C2+4C2+......+49C2+50C2.m2
=(3n+1).51C3
⇒ 50C3+50C2m2=(3n+1).51C3
[∵ rCr+r+1Cr+.....+nCr=n+1Cr+1 ]
⇒ 50×49×483×2×1+50×492×m2
=(3n+1)51×50×493×2×1
m2=51n+1
∴ Minimum value of m2 for which (51n+1) is integer (perfect square) for n=5.
∴ m2=51×5+1
⇒ m2=256
∴ m=16 and n=5
Hence, the value of n is 5