Answer:
Option B,C
Explanation:
Here, $P=\begin{bmatrix}3 & -1 &-2\\2 & 0 &\alpha\\3&-5&0\end{bmatrix} $
Now, $|P|=3(5\alpha)+1(-3\alpha)-2(-10)=12\alpha+20$ ...........(i)
$\therefore$ adj(P)= $\begin{bmatrix}5\alpha & 2\alpha &-10\\-10 & 6 &12\\\alpha&-(3\alpha+4)&2\end{bmatrix} ^{T}$
= $\begin{bmatrix}5\alpha & -10 &-\alpha\\2\alpha & 6 &-3\alpha-4\\-10&12&2\end{bmatrix}$ .....(ii)
As, PQ=kI
$\Rightarrow$ $|P||Q|=|kI|$
$\Rightarrow$ $|P||Q|=k^{3}$
$\Rightarrow$ $|P|\left(\frac{k^{2}}{2}\right)=k^{3}$ $\left[ given, |Q|=\frac{k^{2}}{2}\right]$
$\Rightarrow$ |P|=2k ..............(iii)
$\because$ PQ=ki
$\because$ $Q= kp^{-1}I$
$=k.\frac{adjP}{|P|}=\frac{k(adjP)}{2k}$ [ from Eq. (iii)]
$=\frac{adjP}{2}$
$=\frac{1}{2}\begin{bmatrix}5\alpha & -10 &-\alpha\\2\alpha & 6 &-3\alpha-4\\-10&12&2\end{bmatrix}$
$\therefore$ $q_{23}=\frac{-3\alpha-4}{2} \left[ given, q_{23}=-\frac{k}{8}\right]$
$\Rightarrow$ $-\frac{(3\alpha+4)}{2}=-\frac{k}{8}$
$\Rightarrow$ $(3\alpha+4)\times 4=k$
$\Rightarrow$ $12\alpha+16=k$ .......(iv)
From Eq .(iii) . |P|=2k
$\Rightarrow$ $12\alpha +20=2k$
[ from Eq. (i)].......(v) On solving Eqs. (iv) and (v) , we get $\alpha=-1$ and K=4 ........(vi) $\therefore$ $4\alpha-k+8=-4-4+8=0$ $\therefore$ Option (b) is correct.Now, |P adj (Q)| =|P| |adj Q|= $2k\left(\frac{k^{2}}{2}\right)^{2}=\frac{k^{5}}{2}=\frac{2^{10}}{2}=2^{9}$ $\therefore$ Option (c) correct