Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

Let   P=[31220α350]  , where  αϵR .Suppose Q= [qij] is a matrix such that  PQ=kl, where  kϵR,k0 and l is the identity matrix of order 3. If  q23=k8  and det(Q)=k22  then


A) α=0,k=8

B) 4αk+8=0

C) det(Padj(Q))=29

D) det(Qadj(P))=213

Answer:

Option B,C

Explanation:

Here,  P=[31220α350]

 Now,   |P|=3(5α)+1(3α)2(10)=12α+20         ...........(i)

    adj(P)=   [5α2α1010612α(3α+4)2]T

 =  [5α10α2α63α410122]   .....(ii)

 As,  PQ=kI

     |P||Q|=|kI|

     |P||Q|=k3

     |P|(k22)=k3     [given,|Q|=k22]

   |P|=2k    ..............(iii)

             PQ=ki

           Q=kp1I

=k.adjP|P|=k(adjP)2k   [ from Eq. (iii)]

 =adjP2

 =12[5α10α2α63α410122]

     q23=3α42[given,q23=k8]

              (3α+4)2=k8

     (3α+4)×4=k

   12α+16=k       .......(iv)

From Eq .(iii) . |P|=2k

    12α+20=2k

 [ from Eq. (i)].......(v)
 On solving Eqs. (iv) and (v) , we get
  α=1  and K=4   ........(vi)
     4αk+8=44+8=0
     Option (b) is correct.
Now, |P adj (Q)| =|P| |adj Q|
2k(k22)2=k52=2102=29
     Option (c) correct