Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

Let  f:(0,)R be a differentiable function such that   f(x)=2f(x)x  for all  xϵ(0,)  and f(1)1 Then


A) limx0+f(1x)=1

B) limx0+xf(1x)=2

C) limx0+x2f(x)=0

D) |f(x)|2 for all xϵ(0,2)

Answer:

Option A

Explanation:

Here,  f(x)=2f(x)x 

   or      dydx+yx=2

  [i.e , linear  differential  equation in y]

 Integrationg Factor. IF

               =1/xedx=elogx=x

     Required solution is 

  y.(IF)=Q(IF)dx+C

    y(x)=2(x)dx+C

      yx=x2+C

    y=x+Cx    [C0,asf(1)1]

  (a)   limx0+f(1x)=limx0+(1Cx2)=1  

              Option (a) is correct.

(b)   limx0+xf(1x)=limx0+(1+Cx2)=1

                      Option (b) is incorrect.

(c)    limx0+x2f(x)=limx0+(x2C)=C0

                   Option (c) is incorrect.

(d)    f(x)=x+Cx,C0

            For C>0,    limx0+f(x)=

     Function is not bounded in (0,2)

      Option (d) is incorrect.