Answer:
Option A
Explanation:
Here, f′(x)=2−f(x)x
or dydx+yx=2
[i.e , linear differential equation in y]
Integrationg Factor. IF
=∫1/xedx=elogx=x
∴ Required solution is
y.(IF)=∫Q(IF)dx+C
⇒ y(x)=∫2(x)dx+C
⇒ yx=x2+C
∴ y=x+Cx [∴C≠0,asf(1)≠1]
(a) limx→0+f′(1x)=limx→0+(1−Cx2)=1
∴ Option (a) is correct.
(b) limx→0+xf(1x)=limx→0+(1+Cx2)=1
∴ Option (b) is incorrect.
(c) limx→0+x2f′(x)=limx→0+(x2−C)=−C≠0
∴ Option (c) is incorrect.
(d) f(x)=x+Cx,C≠0
For C>0, limx→0+f(x)=∞
∴ Function is not bounded in (0,2)
∴ Option (d) is incorrect.