Answer:
Option B,C
Explanation:
As , g(f(x))=x
Thus, g(x) is inverse of f(x)
$\Rightarrow$ g(f(x))=x
$\Rightarrow$ $g'(f(x)).f'(x)=1$
$\therefore$ $g'(f(x))=\frac{1}{f'(x)}$ ............(i)
[ where, $f'(x)=3x^{2}+3$ ]
when f(x)=2, then
$x^{3}+3x+2=2$
$\Rightarrow$ x=0
i.e, when x=0 , then f(x)=2
$\therefore$ $g'(f(x))=\frac{1}{3x^{2}+3}$ at (0,2)
$\Rightarrow$ $g'(2)=\frac{1}{3}$
$\therefore$ Option (a) is incorrect.
Now, $h(g(g(x)))=x$
$\Rightarrow$ $h(g(g(f(x)))=f(x)$
$\Rightarrow$ $h(g(x))=f(x)$ ......(ii)
As $g(f(x))=x$
$\therefore$ $h(g(3))=f(3)=3^{3}+3(3)+2=38$
$\therefore$ Option (d) is incorrect.
From Eq.(ii).
h(g(x))=f(x)
$\Rightarrow$ $ h(g(f(x)))= f(f(x))$
$\Rightarrow$ $h(x)=f(f(x))$ .......(iii)
[using g(f(x))=x]
$\Rightarrow$ $h'(x)=f'(f(x)).f'(x)$ .........(iv)
Putting x=1, we get
$h'(1)=f'(f(1)).f'(1)$
$=(3\times 36+3)\times 6$
= $111\times 6=666$
$\therefore$ Option (b) is correct.
Putting x=0 in E.q. (iii) , we get
$h(0)=f(f(0))=f(2)$
=8+6+2=16
$\therefore$ Option (c) is correct.