1)

The circle $C_{1}:x^{2}+y^{2}=3$   with  centre at O intersects the parabola $x^{2}=2y$ at point P in the first quadrant .Let the tangent to the circle   $C_{1}$ at P touches other two circles  $C_{2}$  and $C_{3}$  at $R_{2}$  and  $R_{3}$  , respectively. Suppose  $C_{2}$  and $C_{3}$  have equal radii  $2\sqrt{3}$ and centres   $Q_{2}$ and  $Q_{3}$ , respectively. If $Q_{2}$  and  $Q_{3}$  lie on the Y-axis , then


A) $Q_{2}Q_{3}=12$

B) $R_{2}R_{3}=4\sqrt{6}$

C) area of the $\triangle OR_{2}R_{3} is 6\sqrt{2}$

D) area of the $\triangle PQ_{2}Q_{3} is 4\sqrt{2}$

Answer:

Option A,B,C

Explanation:

Given,

   $C_{1}:x^{2}+y^{2}=3$   intersects the parabola $x^{2}=2y$

2222021582_m25.JPG

 On solving  $x^{2}+y^{2}=3$  and  $x^{2}=2y$

 get

 $y^{2}+2y=3$

  $\Rightarrow$     $y^{2}+2y-3=0$

$\Rightarrow$    $(y+3)(y-1)=0$

$\therefore$      y=1,-3

[ neglecting y=-3,as   $-\sqrt{3}\leq y\leq\sqrt{3}$  ]

$\therefore$    y=1

$\Rightarrow$           $x=\pm\sqrt{2}$

 $\Rightarrow$    $P(\sqrt{2},1)\epsilon $I  quadrant.

Equation of tangent at  $P(\sqrt{2},1)$   to   $C_{1}:x^{2}+y^{2}=3$ is 

 $\sqrt{2}x+1.y=3$           ............(i)

Now, let the centres of  $C_{2}$ and $C_{3}$ be  $Q_{2}$ and  $Q_{3}$, and tangent P touches  $C_{2}$  and $C_{3}$ , at 

$R_{2}$  and  $R_{3}$  shown in below

2222021276_m26.JPG

Let  $Q_{2}$ be (o,k) and radius is  $2\sqrt{3}$

$\therefore$    $\frac{|0+k-3|}{\sqrt{2+1}}=2\sqrt{3}$

   $\Rightarrow$     $|k-3|=6\Rightarrow k=9,-3$

 $Q_{2}$ (0,9)  and  $Q_{3}$ (0,-3)

 Hence, $Q_{2}$$Q_{3}$=12

 $\therefore$   Option (a) is correct.

Also,   $R_{2}$  $R_{3}$    is common internal tangent to   $C_{2}$  and $C_{3}$

 and   $r_{2}=r_{3}=2\sqrt{3}$

 $R_{2}R_{3}=\sqrt{d^{2}-(r_{1}+r_{2})^{2}}$

=  $R_{2}R_{3}=\sqrt{12^{2}-({4\sqrt{3}})^{2}}$

 $=\sqrt{144-48}=\sqrt{96}=4\sqrt{6}$

222202136_m28.JPG

  $\therefore$    Option (b) is correct

 $\therefore$      Length of perpendicular from O(0,0) to  $R_{2}$  $R_{3}$  is equal to radius   $C_{1}=\sqrt{3}$

   $\therefore$     area of $\triangle OR_{2}R_{3}$ =   $\frac{1}{2}\times R_{2}R_{3}\times\sqrt{3}$

  =   $\frac{1}{2}\times 4\sqrt{6}\times\sqrt{3}$

  =  $6\sqrt{2}$

$\therefore$  Option (c) is correct

    Also  , area of  $\triangle PQ_{2}Q_{3}$  =  $\frac{1}{2}Q_{2}.Q_{3}\times\sqrt{2}$

    =  $\frac{1}{2}\times12\times\sqrt{2}=6\sqrt{2}$

  $\therefore$    Option (d) is incorrect.