Answer:
Option A,C
Explanation:
Given, RS is the diameter of x2+y2=1,
Here , equation of the tangent at P(cosθ,sinθ) is xcosθ+ysinθ=1

Intersecting with x=1
y=1−cosθsinθ
∴ Q(1.1−cosθsinθ)
∴ Equation of the line through Q parallel to RS is
y=1−cosθsinθ=2sin2θ22sinθ2cosθ2=tanθ2 ............( i)
Normal at P:y=sinθcosθ.x
⇒ y=xtanθ ...........(ii)
Let their point of intersection be (h,k),
Then, k=tanθ2 and k=htanθ
∴ k=h(2tanθ21−tan2θ2)
⇒ k=2h.k1−k2
⇒ k(1−k2)=2hk
∴ Locus for point E:2x=(1−y2) .....(iii)
when x=13
then 1−y2=23
⇒ y2=1−23
⇒ y=±1√3
∴(13,±1√3) satisfy 2x=1−y2
when x=14, then
1−y2=24
⇒ y2=1−12
⇒ y=±1√2
∴(14,±12) does not satisfy 1−y2=2x