Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

Let RS be the diameter of the circle  x2+y2=1, where S is the point (1,0). Let P be a variable point (other than R and S) on the circle and tangents to be a circle at S and P meet at the point Q. The normal to the circle at P.intersects  a  line drawn through Q parallel to RS at point  E.  Then, the locus of E passes through the point (s)


A) (13,13)

B) (14,12)

C) (13,13)

D) (14,12)

Answer:

Option A,C

Explanation:

Given, RS is the diameter of  x2+y2=1,

Here , equation of the tangent at   P(cosθ,sinθ)  is   xcosθ+ysinθ=1

2122021982_m24.JPG

Intersecting with x=1

y=1cosθsinθ

      Q(1.1cosθsinθ)

  Equation of the line through Q parallel to RS is

 y=1cosθsinθ=2sin2θ22sinθ2cosθ2=tanθ2                      ............( i)

Normal at   P:y=sinθcosθ.x

    y=xtanθ                 ...........(ii)

Let their point of intersection be (h,k),

Then,    k=tanθ2  and  k=htanθ

   k=h(2tanθ21tan2θ2)

    k=2h.k1k2

   k(1k2)=2hk

  Locus  for point  E:2x=(1y2)   .....(iii)

when  x=13

then    1y2=23

             y2=123

       y=±13

(13,±13)   satisfy 2x=1y2

when  x=14,  then

1y2=24

         y2=112

             y=±12

(14,±12)   does not satisfy  1y2=2x