Processing math: 27%


1)

In a  XYZ , let x,y,z be the lengths of sides opposite to the angle  X,Y,Z respectively and 2s=x+y+z. If  sx4=sy3=sz2 and area of incircle of the XYZ is  8π3 then


A) area of the XYZ is 66

B) the radius of circumcircle of the XYZ is 3566

C) sinX2sinY2sinZ2=435

D) sin2(X+Y2)=35

Answer:

Option A,C,D

Explanation:

Given a XYZ  ,where 2x=x+y+z

2122021945_m23.JPG

and   sx4=sy3=sz2

                       \frac{s-x}{4}=\frac{s-y}{3}=\frac{s-z}{2} 

\frac{3x-(x+y+z)}{4+3+2}=\frac{s}{9}

 or  \frac{s-x}{4}=\frac{s-y}{3}=\frac{s-z}{2}=\frac{s}{9}=\lambda(let)

\Rightarrow    s=9\lambda,s=4\lambda+x, s=3\lambda+y 

 and  s=2\lambda+z

\therefore    s=9\lambda,x=5\lambda, y=6\lambda, z=7\lambda

Now,    \triangle= \sqrt{s(s-x)(s-y)(s-z)}   [heron's formula]

= \sqrt{9\lambda.4\lambda.3\lambda.2\lambda}=6\sqrt{6}\lambda^{2}          .........(i)

 Also,  \pi r^{2}=\frac{8\pi}{3}

 \Rightarrow      r^{3}=\frac{8}{3}          .......(ii)

and   R=\frac{xyz}{4\triangle}

 =\frac{(5\lambda)(6\lambda)(7\lambda)}{4.6.\sqrt{6}\lambda^{2}}=\frac{35\lambda}{4\sqrt{6}}  .......(iii)

Now,   r^{2}=\frac{8}{3}=\frac{\triangle^{2}}{S^{2}}=\frac{216\lambda^{2}}{81\lambda^{2}}

 \Rightarrow    \frac{8}{3}=\frac{8}{3}\lambda^{2}               [from Eq. (ii)]

\Rightarrow       \lambda=1

 (a)      \triangle XYZ=6\sqrt{6}\lambda^{2}=6\sqrt{6}

 \therefore      Option (a) is correct.

(b) Radius of circumcircle 

     (R)=\frac{35}{4\sqrt{6}}\lambda=\frac{35}{4\sqrt{6}}

\therefore  Option (b) is incorrect.

(c) Since,  r= 4R\sin\frac{X}{2}.\sin\frac{Y}{2}.\sin\frac{Z}{2}

  \Rightarrow\frac{2\sqrt{2}}{\sqrt{3}}=4.\frac{35}{4\sqrt{6}}\sin\frac{X}{2}\sin\frac{Y}{2}\sin\frac{Z}{2}

   \Rightarrow\frac{4}{35}=\sin\frac{X}{2}\sin\frac{Y}{2}\sin\frac{Z}{2}

 \therefore     Option (c) is correct.

(d)  \sin^{2}\left(\frac{X+Y}{2}\right)=\cos^{2}\left(\frac{Z}{2}\right) .  as

     \frac{X+Y}{2}=90^{0}-\frac{Z}{2}=\frac{s(s-z)}{xy}=\frac{9\times 2}{5\times 6}=\frac{3}{5}

\therefore   Option (d) is correct