Answer:
Option C
Explanation:
Let x=P (computer turns out to be defective, given that it is produced in plant $T_{2}$)
$\Rightarrow$ $x=P(\frac{D}{T_{2}})$ .............(i)
where , D= Defective computer
$\therefore$ P (computer turns out to be defective given that is produced in plant $T_{1}$)=10x
i.e, $P(\frac{D}{T_{1}})=10x$ .......(ii)
Also, $P(T_{1})=\frac{20}{100}$ and $P(T_{2})=\frac{80}{100}$
Given, P (defective computer )= $\frac{7}{100}$
Using law of total probability,
$P(D)=9(T_{1}).P(\frac{D}{T_{1}})+ P(T_{2}).P(\frac{D}{T_{2}})$
$\therefore$ $\frac{7}{100}=(\frac{20}{100}).10x+(\frac{80}{100}).x$
$\Rightarrow$ 7= (280)x
$\Rightarrow$ $x=\frac{1}{40}$ ..........(iii)
$\therefore$ $P(\frac{D}{T_{2}})=\frac{1}{40}$ and $P(\frac{D}{T_{1}})=\frac{10}{40}$
$\Rightarrow$ $P(\frac{\overline{D}}{T_{2}})=1-\frac{1}{40}=\frac{39}{40}$
and $P(\frac{\overline{D}}{T_{1}})=1-\frac{10}{40}=\frac{30}{40}$ .........(iv)
Using Baye's theorem,
$P(\frac{T_{2}}{D})=\frac{P(T_{2}\cap\overline{D})}{P(T_{1}\cap\overline{D})+P(T_{2}\cap\overline{D})}$
$=\frac{P(T_{2}).P(\frac{\overline{D}}{T_{2}})}{P(T_{1}).P(\frac{\overline{D}}{T_{1}})+P(T_{2}).P(\frac{\overline{D}}{T_{2}})}$
$=\frac{\frac{80}{100}.\frac{39}{40}}{\frac{20}{100}.\frac{30}{40}+\frac{80}{100}.\frac{39}{40}}=\frac{78}{93}$