Answer:
Option C
Explanation:
Given, $\sqrt{3} \sec x+ cosec x+2(\tan x-\cot x)=0,$
$(-\pi <x<\pi)-(0,\pm \pi/2)$
$\Rightarrow$ $\sqrt{3}\sin x+\cos x+2 (\sin^{2}x-\cos^{2}x)=0$
$\Rightarrow$ $ \sqrt{3}\sin x +\cos x-2\cos2x=0$
Multiplying and dividing by $\sqrt{a^{2}+b^{2}}.$ i.e
$\sqrt{3+1}=2$ , we get
$2(\frac{\sqrt{3}}{2}\sin x+\frac{1}{2}\cos x)-2\cos2x=0$
= $(\cos x.\cos\frac{\pi}{3}+\sin x.\sin\frac{\pi}{3})-\cos 2x=0$
$\cos (x-\frac{\pi}{3})=\cos 2x$
$\therefore$ $\therefore2x=2n\pi\pm (x-\frac{\pi}{3})$
[since., $\cos\theta=\cos \alpha \Rightarrow\theta=2n\pi\pm \alpha]$
$\Rightarrow$ $2x=2n\pi+x-\frac{\pi}{3}$
or $2x=2n\pi-x+\frac{\pi}{3}$
$\Rightarrow x=2n\pi-\frac{\pi}{3}or 3x=2n\pi+\frac{\pi}{3}$
$\Rightarrow x=2n\pi-\frac{\pi}{3}or x=\frac{2n\pi}{3}+\frac{\pi}{9}$
$\therefore$ $ x=-\frac{\pi}{3}$ or $ x=\frac{\pi}{9}.-\frac{5\pi}{9}.\frac{7\pi}{9}$
Now, sum of all distinct solutions
$=-\frac{\pi}{3}+\frac{\pi}{9}-\frac{5\pi}{9}+\frac{7\pi}{9}=0$