Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

Let   S=[xϵ(π,π):x0,±π2], The sum of all distinct solutions of the equation 3secx+cosecx+2(tanxcotx)=0  in the set S is equal to 


A) 7π9

B) 2π9

C) 0

D) 5π9

Answer:

Option C

Explanation:

Given,    3secx+cosecx+2(tanxcotx)=0,

(π<x<π)(0,±π/2)

     3sinx+cosx+2(sin2xcos2x)=0

     3sinx+cosx2cos2x=0

  Multiplying and dividing by   a2+b2. i.e

 3+1=2  , we get

 2(32sinx+12cosx)2cos2x=0

(cosx.cosπ3+sinx.sinπ3)cos2x=0

  cos(xπ3)=cos2x

       2x=2nπ±(xπ3)

  [since., cosθ=cosαθ=2nπ±α]

      2x=2nπ+xπ3

 or      2x=2nπx+π3   

 x=2nππ3or3x=2nπ+π3

  x=2nππ3orx=2nπ3+π9

  x=π3 or    x=π9.5π9.7π9

Now, sum of all distinct solutions

=π3+π95π9+7π9=0