Answer:
Option C
Explanation:
Here, $x^{2}-2x\sec\theta+1=0$ has roots $\alpha_{1}$ and $\beta_{1}$.
$\therefore$ $\alpha_{1},\beta_{1}=\frac{2\sec \theta\pm \sqrt{4\sec^{2}\theta-4}}{2\times 1}$
$=\frac{2\sec \theta\pm 2|\tan\theta|}{2}$
Since, $\theta \epsilon(-\frac{\pi}{6},-\frac{\pi}{12}),$
i.e, Θ ε IV quadrant = $\frac{2\sec \theta\pm2\tan \theta}{2}$
$\therefore$ $\alpha_{1}=\sec \theta-\tan\theta$ and $\beta_{1}=\sec \theta+\tan\theta$
(as $\alpha_{1}$ > $\beta_{1}$ )
and $x^{2}+2x\tan \theta-1=0$ has roots $\alpha_{2}$ and $\beta_{2}$.
i.e. $\alpha_{2} , \beta_{2}= \frac{-2\tan \theta\pm\sqrt{4\tan^{2}\theta+4}}{2}$
$\therefore$ $\alpha_{2} =-\tan\theta+\sec \theta$
and $\beta_{2} =-\tan\theta-\sec \theta $ [as $\alpha_{2}>\beta_{2} $ ]
Thus, $\alpha_{1}+\beta_{2}=-2\tan\theta$