Answer:
Option D
Explanation:
(DC) Diffusion coefficient $\propto$ $\lambda$ (means free path ) $\propto$ $U_{mean}$ , thus
(DC) $\propto$ $\lambda$ $U_{mean}$
but, $\lambda = \frac{RT}{\sqrt{2}N_{0}\sigma p}\Rightarrow \lambda \propto\frac{T}{p}$,
and $U_{mean}=\sqrt{\frac{8RT}{\pi M}}\Rightarrow U_{mean}\propto\sqrt{T}$
$\therefore$ $DC\propto \frac{(T)^{\frac{3}{2}}}{p}$
$\frac{(DC)_{2}}{(DC)_{1}}(x)=(\frac{p_{1}}{p_{2}}) (\frac{T_{2}}{T_{1}})^{\frac{3}{2}}$
$= (\frac{p_{1}}{2p_{1}})(\frac{4T_{1}}{T_{1}})^{\frac{3}{2}}=(\frac{1}{2})(8)=4$