Answer:
Option B
Explanation:
Moles of solute , $n_{1}=\frac{w_{1}}{m_{1}}$ ; Moles of solvent , $n_{2}=\frac{w_{2}}{m_{2}}$
$x_{1}$ (solute)=0.1 and $x_{2}$ ( solvent)=0.9
$\therefore$ $\frac{x_{1}}{x_{2}}=\frac{n_{1}}{n_{2}}=\frac{w_{1}}{m_{1}}.\frac{m_{2}}{w_{2}}=\frac{1}{9}$
$Molarity=\frac{Solute(moles)}{Volume(L)}$
$=\frac{W_{1}\times 1000\times2}{m_{1}(w_{1}+w_{2})}$
Note volume= Total mass of solution / Density
$=(\frac{w_{1}+w_{2}}{2})mL$
$Molality=\frac{Solute(moles)}{Solvent(kg)}=\frac{w_{1}\times1000}{m_{1}\times w_{2}}$
Given, Molarity=Molality
hence, $\frac{2000w_{1}}{m_{1}(w_{1}+w_{2})}=\frac{1000 w_{1}}{m_{1} w_{2}}$
$\therefore$ $\frac{w_{2}}{w_{1}+w_{2}}=\frac{1}{2}$
$\Rightarrow$ $w_{1}=w_{2}=1$
$\therefore$ $\frac{w_{1}m_{2}}{m_{1}w_{2}}=\frac{1}{9}$
$\Rightarrow$ $\frac{m_{1}(solute)}{m_{2}(solvent)}=9$