Answer:
Option A
Explanation:
Here, $\frac{x^{2}}{9}+\frac{y^{2}}{8}=1$ ..........(i)
has foci (± ae,0)
where , $a^{2}e^{2}=a^{2}-b^{2}\Rightarrow a^{2}e^{2}=9-8$
$\Rightarrow$ ae=± 1, i.e. $F_{1}.F_{2}=(\pm1,0)$
Equation of parabola having vertex O(0,0) and $F_{2}(1,0)$ (as $x_{2}>0$)
$y^{2}=4x$ ........(ii)
On solving $\frac{x^{2}}{9}+\frac{y^{2}}{8}=1$ and $y^{2}=4x$ , we get
$x=\frac{3}{2}$ and $y=\pm\sqrt{6}$
Equation of altitude through M on NF1 is
$\frac{y-\sqrt{6}}{x-3/2}=\frac{5}{2\sqrt{6}}$
$\Rightarrow (y-\sqrt{6})=\frac{5}{2\sqrt{6}}(x-3/2)$ ............(iii)
and equation of altitude through
F1 is y=0 ........(iv)
On solving Eqs. (iii) and (iv), we get $(-\frac{9}{10},0)$ as orthocentre.