1)

Let a,b ε R and $a^{2}+b^{2}\neq 0$ . Suppose  $S=( z\epsilon C: z=\frac{1}{a+ibt},t\epsilon R, t\neq0)$  where$i=\sqrt{-1}$ . If z=x+iy and z ε S, then (x,y) lies on


A) the circle with radius $\frac{1}{2a}$ and centre $(\frac{1}{2a},0)$ for a>0, $b\neq 0$

B) the circle with radius $-\frac{1}{2a}$ and centre $(-\frac{1}{2a},0)$ for $a<0,b\neq 0$

C) the X-axis for $a\neq0, b=0$

D) the Y-axis for $a=0, b\neq0$

Answer:

Option A,C,D

Explanation:

Here,  $x+iy=\frac{1}{a+ibt}\times \frac{a-ibt}{a-ibt}$

$\therefore$    $x+iy=\frac{a-ibt}{a^{2}+b^{2}t^{2}}$

                    Let                     a≠ 0,b≠ 0

$\therefore$  $x=\frac{a}{a^{2}+b^{2}t^{2}}$ and    $y=\frac{-bt}{a^{2}+b^{2}t^{2}}$

$\Rightarrow$     $\frac{y}{x}=\frac{-bt}{a}\Rightarrow t=\frac{ay}{bx}$

On putting  $x=\frac{a}{a^{2}+b^{2}t^{2}},$ we get

                 $x(a^{2}+b^{2}.\frac{a^{2}y^{2}}{b^{2}x^{2}})=a$

                    $\Rightarrow a^{2}(x^{2}+y^{2})=ax$

                    or    $x^{2}+y^{2}-\frac{x}{a}=0$     .........(i)

             or         $(x-\frac{1}{2a})^{2}+y^{2}=\frac{1}{4a^{2}}$

  $\therefore$ Option (a) is correct.

      For a≠ 0, b=0

$x+iy=\frac{1}{a}\Rightarrow x=\frac{1}{a},y=0$

$\Rightarrow$ z lies on X-axis

$\therefore$    Option (c) is correct.

For a=0, b≠ 0,

$x+iy=\frac{1}{ibt}$

$\Rightarrow$    x=0, $y=-\frac{1}{bt}$

$\Rightarrow$  z lies on Y-axis

$\therefore$  Option (d) is correct