Answer:
Option A,C,D
Explanation:
Here, $x+iy=\frac{1}{a+ibt}\times \frac{a-ibt}{a-ibt}$
$\therefore$ $x+iy=\frac{a-ibt}{a^{2}+b^{2}t^{2}}$
Let a≠ 0,b≠ 0
$\therefore$ $x=\frac{a}{a^{2}+b^{2}t^{2}}$ and $y=\frac{-bt}{a^{2}+b^{2}t^{2}}$
$\Rightarrow$ $\frac{y}{x}=\frac{-bt}{a}\Rightarrow t=\frac{ay}{bx}$
On putting $x=\frac{a}{a^{2}+b^{2}t^{2}},$ we get
$x(a^{2}+b^{2}.\frac{a^{2}y^{2}}{b^{2}x^{2}})=a$
$\Rightarrow a^{2}(x^{2}+y^{2})=ax$
or $x^{2}+y^{2}-\frac{x}{a}=0$ .........(i)
or $(x-\frac{1}{2a})^{2}+y^{2}=\frac{1}{4a^{2}}$
$\therefore$ Option (a) is correct.
For a≠ 0, b=0
$x+iy=\frac{1}{a}\Rightarrow x=\frac{1}{a},y=0$
$\Rightarrow$ z lies on X-axis
$\therefore$ Option (c) is correct.
For a=0, b≠ 0,
$x+iy=\frac{1}{ibt}$
$\Rightarrow$ x=0, $y=-\frac{1}{bt}$
$\Rightarrow$ z lies on Y-axis
$\therefore$ Option (d) is correct