Processing math: 100%


1)

Let P be the point on the parabola  y2=4x , which is at the shortest distance from the centre S of the circle .x2+y24x+16y+64=0. Let Q be the point on the circle dividing the line segment  SP internally. Then, 


A) SP=25

B) SQ:QP=(5+1):2

C) the x -intercept of the normal to the parabola at P is 6

D) the slope of the tangent to the circle at Q is 12

Answer:

Option A,C,D

Explanation:

Tangent  to y2=4x  at  (t2,2t) is 

1622021420_m16.JPG

y(2t)=2(x+t2)

              yt=x+t2          ...........(i)

 Equation of normal  at P(t2,2t)  is

   y+tx=2t+t3

 since, normal at P passes through centre of circle S (2,8).

8+2t=2t+t3t=2,i.e,P(4,4)

 [Since, shortest distance between two curves lie along their common normal and the common  normal will pass through the centre of circle ]

SP=(42)2+(48)2=25

  Option (a) is correct.

 Also, SQ=2

PQ=SPSQ=252

Thus,   SQQP=151=5+14

      Option (b) is incorrect.

 Now, x- intercept of normal is 

                    x=2+22=6

   Option (c) is correct.

  Slope of tangent= 1t=12

  Option (d) is incorrect