Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

Let  ˆu=u1ˆi+u2ˆj+u3ˆk be a unit vector  R3 and ˆw=16(ˆi+ˆj+2ˆk). Given that there exists vector  v  in  R3 , such  that  |ˆu+v|=1 and  ˆw.(ˆu+v)=1   which of the following statement(s) is/are correct?


A) There is exactly one choice for such v

B) There are infinitely many choices for such v

C) If ˆu lies in the XY-plane, then |u1|=|u2|

D) If ˆu lies in the XY-plane, 2 |u1|=|u3|

Answer:

Option B,C

Explanation:

Let θ be the angle between  ˆu and v

|ˆu×v|=1|ˆu|v|sinθ=1

|v|sinθ=1 [|ˆu|=1]  .......(i)

1622021654_m12.JPG

Clearly, there may be infinite vectors

 OP=v , such that  P is always 1 unit distance from  ˆu.

    Option (b) is correct.

Again, let Φ be the angle between ˆw and  ˆu×v.

ˆw.(ˆu×v)=1|ˆw||ˆu×v|cosϕ=1

cosϕ=1ϕ=0

Thus,    ˆw=ˆu×v

Now, if  ˆu lies in XY-plane, then

|ˆiˆjˆku1u20v1v2v3|

 or      ˆu=uˆi+u2ˆj

     ˆw=(u2v3)ˆi(u1v3)ˆj+(u1v2v1u2)ˆk

 ˆw=16(ˆi+ˆj+2ˆk)

     u2v3=16u1v3=16

u2v3u1v3=1 or   |u1|=|u2|

Option (c) is correct.

Now, if  ˆu lies un XZ-plane, then  ˆu=u1ˆi+u3ˆk

           

|ˆiˆjˆku10u3v1v2v3|

w=(v2u3)ˆi(u1v3u3v1)ˆj+(u1v2)ˆk

ˆw=16(ˆi+ˆj+2ˆk)

=v2u3=16  and  u1v2=26

=|u2|=2|u3|

    Option (d) is incorrect