Answer:
Option A,D
Explanation:
Here, \lim_{x \rightarrow 2}\frac{f(x).g(x)}{f'(x).g'(x)}=1
\Rightarrow \lim_{x \rightarrow 2}\frac{f(x)g'(x)+f'(x)g(x)}{f''(x)g'(x)+f'(x)g''(x)}=1
[using L' hospital's rule]
\Rightarrow \frac{f(2)g'(2)+f'(2)g(2)}{f''(2)g'(2)+f'(2)g''(2)}=1
\Rightarrow \frac{f(2)g'(2)}{f''(2)g'(2)}=1
[\therefore f'(2)=g(2)=0]
\Rightarrow f(2)=f''(2) ...............(i)
\therefore f(x)-f"(x)=0 , for atleast one x ε R
\Rightarrow Option (d) is correct
Also, f:R → (0,∞ )
\Rightarrow f(2)>0
\therefore f''(2)=f(2)>0 [ from Eq .(i)]
Since f '(2)=0 and f''(2) >0
\therefore f(x) attains local minimum at x=2
\Rightarrow Option (a) is correct.