Loading [MathJax]/jax/element/mml/optable/BasicLatin.js


1)

Let f:R→ (0,∞) and g: R→ R be twice differentiable functions such that f ’’ and g’’ are continuous functions on R

 Suppose  f(2)=g(2)=0,f(2)0 and g(2)0, If  lim,  then

 


A) f has a local minimum at x=2

B) f has a local maximum at x=2

C) f ' '(2) > f (2)

D) f (x)- f ' ' (x) =0, for atleast x \epsilon R

Answer:

Option A,D

Explanation:

Here,  \lim_{x \rightarrow 2}\frac{f(x).g(x)}{f'(x).g'(x)}=1

 \Rightarrow \lim_{x \rightarrow 2}\frac{f(x)g'(x)+f'(x)g(x)}{f''(x)g'(x)+f'(x)g''(x)}=1

  [using L' hospital's rule]

\Rightarrow   \frac{f(2)g'(2)+f'(2)g(2)}{f''(2)g'(2)+f'(2)g''(2)}=1

\Rightarrow       \frac{f(2)g'(2)}{f''(2)g'(2)}=1

 [\therefore f'(2)=g(2)=0]

  \Rightarrow f(2)=f''(2)           ...............(i)

\therefore            f(x)-f"(x)=0 , for atleast one x ε R

 \Rightarrow Option (d) is correct

   Also, f:R → (0,∞ )

\Rightarrow       f(2)>0

\therefore   f''(2)=f(2)>0  [ from Eq .(i)]

Since f '(2)=0 and f''(2) >0

\therefore f(x) attains local minimum at x=2

\Rightarrow  Option (a) is correct.