Answer:
Option A,D
Explanation:
Here, limx→2f(x).g(x)f′(x).g′(x)=1
⇒limx→2f(x)g′(x)+f′(x)g(x)f″(x)g′(x)+f′(x)g″(x)=1
[using L' hospital's rule]
⇒f(2)g′(2)+f′(2)g(2)f″(2)g′(2)+f′(2)g″(2)=1
⇒f(2)g′(2)f″(2)g′(2)=1
[∴
\Rightarrow f(2)=f''(2) ...............(i)
\therefore f(x)-f"(x)=0 , for atleast one x ε R
\Rightarrow Option (d) is correct
Also, f:R → (0,∞ )
\Rightarrow f(2)>0
\therefore f''(2)=f(2)>0 [ from Eq .(i)]
Since f '(2)=0 and f''(2) >0
\therefore f(x) attains local minimum at x=2
\Rightarrow Option (a) is correct.