Answer:
Option A,D
Explanation:
Here, $\lim_{x \rightarrow 2}\frac{f(x).g(x)}{f'(x).g'(x)}=1$
$\Rightarrow \lim_{x \rightarrow 2}\frac{f(x)g'(x)+f'(x)g(x)}{f''(x)g'(x)+f'(x)g''(x)}=1$
[using L' hospital's rule]
$\Rightarrow \frac{f(2)g'(2)+f'(2)g(2)}{f''(2)g'(2)+f'(2)g''(2)}=1$
$\Rightarrow \frac{f(2)g'(2)}{f''(2)g'(2)}=1$
$[\therefore f'(2)=g(2)=0]$
$\Rightarrow f(2)=f''(2)$ ...............(i)
$\therefore$ $f(x)-f"(x)=0$ , for atleast one x ε R
$\Rightarrow$ Option (d) is correct
Also, f:R → (0,∞ )
$\Rightarrow$ f(2)>0
$\therefore$ f''(2)=f(2)>0 [ from Eq .(i)]
Since f '(2)=0 and f''(2) >0
$\therefore$ f(x) attains local minimum at x=2
$\Rightarrow$ Option (a) is correct.