Answer:
Option B,C
Explanation:
Here, f(x)
=limn→∞[nn(x+n)(x+n2)....(x+nn)n!(x2+n2)(x2+n24).....(x2+n2n2)]xn
x>0
Taking log on both sides, we get loge[f(x)]
=limn→∞log[nn(x+n)(x+n2)....(x+nn)n!(x2+n2)(x2+n24).....(x2+n2n2)]xn
=limn→∞xn.log[∏nr=1(x+1r/n)∏nr=1(x2+1(r/n)2)∏nr=1(r/n)]
=xlimn→∞1n∑nr=1log[x+nr(x2+n2r2)(r/n)]
=xlimn→∞1n∑n1log[rn.x+1r2n2.x2+1]
Converting summation into definite integration, we get loge[f(x)]
=x∫10log(xt+1x2t2+1)dt
put tx=z⇒xdt=dz
∴loge[f(x)]=x∫x0log(1+z1+z2)dzx
⇒loge[f(x)]=∫x0log(1+z1+z2)dz
Using Newton-Leibnitz formula, we get
1f(x).f′(x)=log(1+x1+x2)......(i)
Here x=1,
f′(1)f(1)=log(1)=0
∴ F'(1)=0
Now,sign scheme of f'(x) is shown below

∴ At x=1, function attains maximum
Since, f(x) increases on (0,1)
f(1)>f(1/2)
∴ Option (a) is incorrect
f(1/3)<f(2/3)
∴ Option (b) is correct
Also ,f'(x)<0, when x>1
⇒ f'(2)<0
∴ Option(c) is correct
Also, f′(x)f(x)=log(1+x1+x2)
∴ f′(3)f(3)−f′(2)f(2)=log(410)−log(35)
= log(2/3)<0
⇒f′(3)f(3)<f′(2)f(2)
∴ Option (d) is incorrect