Processing math: 100%


1)

Let f(x)=limn[nn(x+n)(x+n2)....(x+nn)n!(x2+n2)(x2+n24).....(x2+n2n2)]xn

for all x=0, then


A) f(12)f(1)

B) f(13)f(23)

C) f(2)0

D) f(3)f(3)f(2)f(2)

Answer:

Option B,C

Explanation:

Here, f(x)

  =limn[nn(x+n)(x+n2)....(x+nn)n!(x2+n2)(x2+n24).....(x2+n2n2)]xn

     x>0

Taking  log on both sides, we get  loge[f(x)]

             =limnlog[nn(x+n)(x+n2)....(x+nn)n!(x2+n2)(x2+n24).....(x2+n2n2)]xn

=limnxn.log[nr=1(x+1r/n)nr=1(x2+1(r/n)2)nr=1(r/n)]

=xlimn1nnr=1log[x+nr(x2+n2r2)(r/n)]

=xlimn1nn1log[rn.x+1r2n2.x2+1]

Converting summation into definite integration, we get  loge[f(x)]

=x10log(xt+1x2t2+1)dt

put tx=zxdt=dz

loge[f(x)]=xx0log(1+z1+z2)dzx

loge[f(x)]=x0log(1+z1+z2)dz

Using Newton-Leibnitz formula, we get

1f(x).f(x)=log(1+x1+x2)......(i)

Here x=1,

   f(1)f(1)=log(1)=0

          F'(1)=0

Now,sign scheme of f'(x) is shown below

 1622021934_c12.JPG

 

                 At x=1, function attains maximum

 Since, f(x) increases on (0,1)

                         f(1)>f(1/2)

   Option (a) is incorrect

                               f(1/3)<f(2/3)

    Option (b) is correct

 Also ,f'(x)<0, when x>1

             f'(2)<0

Option(c) is correct

         Also,  f(x)f(x)=log(1+x1+x2)

   f(3)f(3)f(2)f(2)=log(410)log(35)

                              =  log(2/3)<0

f(3)f(3)<f(2)f(2)

      Option (d) is incorrect