1)

Let $a,b\epsilon R$ and f:R→ R  be defined by  $f(x)=a\cos(|x^{3}-x|)+b|x|\sin(|x^{3}+x|)$. Then f is 


A) differentiable at x=0, if a=0 and b=1

B) differentiable at x=1, if a=1 and b=0

C) not differentiable at x=0, if a=1 and b=0

D) not differentiable at x=1, if a=1 and b=1

Answer:

Option A,B

Explanation:

$f(x)=a\cos(|x^{3}-x|)+b|x|\sin(|x^{3}+x|)$

   if  $x^{3}-x\geq0$

$\Rightarrow  \cos|x^{3}-x|=\cos(x^{3}-x)$

            $x^{3}-x\leq0$

$\Rightarrow  \cos|x^{3}-x|=\cos(x^{3}-x)$

$\therefore  \cos(|x^{3}-x|)=\cos(x^{3}-x), \forall x\epsilon R$   .........(i)

Again , if   $x^{3}+x\geq0$

    $\Rightarrow  |x|\sin(|x^{3}+x|)=x\sin(x^{3}+x)$

$x^{3}+x\leq 0$

 $\Rightarrow  |x|\sin(|x^{3}+x|)=-x\sin(-(x^{3}+x)) $

$\therefore $                 $|x|\sin(|x^{3}+x|)=x\sin(x^{3}+x), \forall x\epsilon R$  .......(ii)

$\Rightarrow f(x)=a\cos(|x^{3}-x|)+b|x|\sin(|x^{3}+x|)$

$\therefore $  $f(x)= a\cos (x^{3}-x)+bx \sin (x^{3}+x)$     ........(iii)

which is clearly sum and composition of differential functions.

    Hence, f(x) is always continuous  and differentiable