Answer:
Option A,B
Explanation:
$f(x)=a\cos(|x^{3}-x|)+b|x|\sin(|x^{3}+x|)$
if $x^{3}-x\geq0$
$\Rightarrow \cos|x^{3}-x|=\cos(x^{3}-x)$
$x^{3}-x\leq0$
$\Rightarrow \cos|x^{3}-x|=\cos(x^{3}-x)$
$\therefore \cos(|x^{3}-x|)=\cos(x^{3}-x), \forall x\epsilon R$ .........(i)
Again , if $x^{3}+x\geq0$
$\Rightarrow |x|\sin(|x^{3}+x|)=x\sin(x^{3}+x)$
$x^{3}+x\leq 0$
$\Rightarrow |x|\sin(|x^{3}+x|)=-x\sin(-(x^{3}+x)) $
$\therefore $ $|x|\sin(|x^{3}+x|)=x\sin(x^{3}+x), \forall x\epsilon R$ .......(ii)
$\Rightarrow f(x)=a\cos(|x^{3}-x|)+b|x|\sin(|x^{3}+x|)$
$\therefore $ $f(x)= a\cos (x^{3}-x)+bx \sin (x^{3}+x)$ ........(iii)
which is clearly sum and composition of differential functions.
Hence, f(x) is always continuous and differentiable