Answer:
Option C
Explanation:
Let image of Q(3,1,7) w.r.t
x-y+z=3 be $P (\alpha,\beta,\gamma)$
$\therefore \frac{\alpha-3}{1}=\frac{\beta-1}{-1}=\frac{\gamma-7}{1}$
$=\frac{-2(3-1+7-3)}{1^{2}+(-1)^{2}+(1)^{2}}$
$\Rightarrow\alpha-3=1-\beta=\gamma-7=-4$
$\therefore$ $\alpha=-1,\beta=5,\gamma=3$
Hence, the image of Q(3,1,7) is P(-1,5,3) .
to find equation of plane passing through P(-1,5,3) and containing $\frac{x}{1}=\frac{y}{2}=\frac{z}{1}$
$\Rightarrow$ $\begin{bmatrix}x-1 & y-0 & z-1 \\1-0 & 2-0 &1-0\\-1-0&5-0&3-0 \end{bmatrix}=0$
$\Rightarrow x (6-5)-y(3+1)+z(5+2)=0$
$\therefore$ x-4y+7z=0