Answer:
Option C
Explanation:
Let image of Q(3,1,7) w.r.t
x-y+z=3 be P(α,β,γ)
∴α−31=β−1−1=γ−71
=−2(3−1+7−3)12+(−1)2+(1)2
⇒α−3=1−β=γ−7=−4
∴ α=−1,β=5,γ=3

Hence, the image of Q(3,1,7) is P(-1,5,3) .
to find equation of plane passing through P(-1,5,3) and containing x1=y2=z1

⇒ [x−1y−0z−11−02−01−0−1−05−03−0]=0
⇒x(6−5)−y(3+1)+z(5+2)=0
∴ x-4y+7z=0