1)

The value of  π2π2x2cosx1+exdx is equal to


A) π242

B) π24+2

C) π2eπ2

D) π2+eπ2

Answer:

Option A

Explanation:

Let   I=π2π2x2cosx1+exdx         ......(i)

[baf(x)dx=baf(a+bx)dx]

I=π2π2x2cos(x)1+exdx  .................(ii)

On adding Eqs(i) and (ii) , we get

         2I=π2π2x2cosx[11+ex+11+ex]dx

          =π2π2x2cosx.(1)dx

           [ aaf(x)dx

                       =2a0f(x)dx.whenf(x)=f(x)]

2I=2π20x2cosxdx

Using integration by parts , we get

                2I=2[x2(sinx)(2x)(cosx)+(2)(sinx)]π20

2I=2[π242]

     I=π242