Answer:
Option A
Explanation:
Let I=∫π2−π2x2cosx1+exdx ......(i)
[∵∫baf(x)dx=∫baf(a+b−x)dx]
⇒I=∫π2−π2x2cos(−x)1+e−xdx .................(ii)
On adding Eqs(i) and (ii) , we get
2I=∫π2−π2x2cosx[11+ex+11+e−x]dx
=∫π2−π2x2cosx.(1)dx
[ ∴∫a−af(x)dx
=2∫a0f(x)dx.whenf(−x)=f(x)]
⇒2I=2∫π20x2cosxdx
Using integration by parts , we get
2I=2[x2(sinx)−(2x)(−cosx)+(2)(−sinx)]π20
⇒2I=2[π24−2]
∴I=π24−2