Processing math: 57%


1)

Let bi>1 for i=1,2,.....101.  Suppose  logeb1,logeb2,.......logeb101 are  in AP with the common difference  loge2 . Suppose  a1,a2,........a101  are in AP, such that  a1=b1 and a51=b51. If  t=b1+b2+.....+b51 and  s=a1+a2+.....+a51 , then


A) s >t and a101 > b101

B) s >t and a101 < b101

C) s <t and a101 > b101

D) s >t and a101 < b101

Answer:

Option B

Explanation:

If  logb1,logb2.........logb101 are in AP, with common difference  loge2. then  b1,b2.........b101 are in GP , with common ratio 2

                b1=20b1

                 b2=21b1

                 b3=22b1

                    :              :            :

                  b101=2100b1             ..........(i)

  Also  a1,a2,........a101  are in AP

     Given, a1=b1  and a51=b51

a1+50D=250b1

a1+50D=250a1[     ........(ii)

Now,   t= b_{1} +b_{2}+.....+b_{51}

\Rightarrow t=b_{1}\frac{(2^{51}-1)}{2-1}........(iii)

and s= a_{1} +a_{2}+.....+a_{51} 

=\frac{51}{2}(2a_{1}+50D)   .....(iv)

\therefore     t= a_1(2^{51}-1)[\because a_{1}=b_{1}]

or   t= 2^{51}a_{1}-a_{1}<2^{51}a_{1}   ......(v)

and  s= \frac{51}{2}[a_{1}+(a_{1}+50D]   

                                                          [from Eq.(iii)]

   =  \frac{51}{2}[a_{1}+2^{50}a_{1}]=\frac{51}{2}a_{1}+\frac{51}{2}2^{50}a_{1}

\therefore  s>2^{51}a_{1}           ............(vi)

 From Eqs(v) and (vi)

  we get s>t

 Also              a_{101}=a_{1}+100D

and    b_{101}=2^{100}b_{1}

\therefore   a_{101}=a_{1}+100(\frac{2^{50}a_{1}-a_{1}}{50})

  and     b_{101}=2^{100}a_{1}

\Rightarrow a_{101}=a_{1}+2^{51}a_{1}-2a_{1}=2^{51}a_{1}-a_{1}

\Rightarrow a_{101}<2^{51}a_{1}

and   b_{101}>2^{51}a_{1}\Rightarrow b_{101}>a_{101}