Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

Let bi>1 for i=1,2,.....101.  Suppose  logeb1,logeb2,.......logeb101 are  in AP with the common difference  loge2 . Suppose  a1,a2,........a101  are in AP, such that  a1=b1 and a51=b51. If  t=b1+b2+.....+b51 and  s=a1+a2+.....+a51 , then


A) s >t and a101 > b101

B) s >t and a101 < b101

C) s <t and a101 > b101

D) s >t and a101 < b101

Answer:

Option B

Explanation:

If  logb1,logb2.........logb101 are in AP, with common difference  loge2. then  b1,b2.........b101 are in GP , with common ratio 2

                b1=20b1

                 b2=21b1

                 b3=22b1

                    :              :            :

                  b101=2100b1             ..........(i)

  Also  a1,a2,........a101  are in AP

     Given, a1=b1  and a51=b51

a1+50D=250b1

a1+50D=250a1[a1=b1]     ........(ii)

Now,   t=b1+b2+.....+b51

t=b1(2511)21........(iii)

and s=a1+a2+.....+a51 

=512(2a1+50D)   .....(iv)

     t=a1(2511)[a1=b1]

or   t=251a1a1<251a1   ......(v)

and  s=512[a1+(a1+50D]   

                                                          [from Eq.(iii)]

   =  512[a1+250a1]=512a1+512250a1

  s>251a1           ............(vi)

 From Eqs(v) and (vi)

  we get s>t

 Also              a101=a1+100D

and    b101=2100b1

   a101=a1+100(250a1a150)

  and     b101=2100a1

a101=a1+251a12a1=251a1a1

a101<251a1

and  b101>251a1b101>a101