Answer:
Option B
Explanation:
If logb1,logb2.........logb101 are in AP, with common difference loge2. then b1,b2.........b101 are in GP , with common ratio 2
b1=20b1
b2=21b1
b3=22b1
: : :
b101=2100b1 ..........(i)
Also a1,a2,........a101 are in AP
Given, a1=b1 and a51=b51
⇒a1+50D=250b1
⇒a1+50D=250a1[∵ ........(ii)
Now, t= b_{1} +b_{2}+.....+b_{51}
\Rightarrow t=b_{1}\frac{(2^{51}-1)}{2-1}........(iii)
and s= a_{1} +a_{2}+.....+a_{51}
=\frac{51}{2}(2a_{1}+50D) .....(iv)
\therefore t= a_1(2^{51}-1)[\because a_{1}=b_{1}]
or t= 2^{51}a_{1}-a_{1}<2^{51}a_{1} ......(v)
and s= \frac{51}{2}[a_{1}+(a_{1}+50D]
[from Eq.(iii)]
= \frac{51}{2}[a_{1}+2^{50}a_{1}]=\frac{51}{2}a_{1}+\frac{51}{2}2^{50}a_{1}
\therefore s>2^{51}a_{1} ............(vi)
From Eqs(v) and (vi)
we get s>t
Also a_{101}=a_{1}+100D
and b_{101}=2^{100}b_{1}
\therefore a_{101}=a_{1}+100(\frac{2^{50}a_{1}-a_{1}}{50})
and b_{101}=2^{100}a_{1}
\Rightarrow a_{101}=a_{1}+2^{51}a_{1}-2a_{1}=2^{51}a_{1}-a_{1}
\Rightarrow a_{101}<2^{51}a_{1}
and b_{101}>2^{51}a_{1}\Rightarrow b_{101}>a_{101}