Answer:
Option C
Explanation:
a) $K_{p}= \frac{4px^{2}}{(4-x^{2})}=px^{2}(\because 4>>>x)$
$\therefore x\alpha \sqrt{\frac{1}{p}}$
If p decreases, x increases. Equilibrium is shifted in the forward side. Thus, statement(a) is correct
(b) At the start of the reaction , Q=0 where , Q is the reaction quotient
$\triangle G= \triangle G^{0}+2.303RT \log Q$
since $\triangle G^{0}>0$ , thus $\triangle G$ is -ve
Hence, dissociation take place spontaneously,
Thus (b) is correct
(c) If we use x= 0.7 and p=2 bar,
then $K_{p}=\frac{4\times 2(0.7)^{2}}{[4-(0.7)^{2}]}=1.16>1$
Thus, (c) is incorrect
(d) At equilibium, $\triangle G=0$
$\therefore$ $\triangle G ^{0}=-2.303RT\log K_{p}$
Since , $\triangle G ^{0}=+ve$
$Hence, K_{p}< 1,K_{C}= \frac{K_{p}}{(RT)}$
Then $ K_{C}< 1$ , Thus (d) is correct