1)

The correct statement (s) for cubic close packed (ccp) three dimensional structure is (are)


A) The number of the nearest neighbours of an atom present in the topmost layer is 12

B) The packing efficiency of atom is 74%

C) The number of octahedral and tetrahedral voids per atom are 1 and 2, respectively

D) The unit cell edge length is $2\sqrt{2}$ times the radius of the atom.

Answer:

Option B,C,D

Explanation:

(a)  Nearest neighbour in the topmost  layer of ccp structure is 9 thus, incorrect

(b) Packing efficiency is 74% thus, correct

(c) Tetrahedral voids=2

 Octahedral  voids= 1 per atom thus, correct.

 (d) Edge length,

                   $a=\frac{4}{\sqrt{2}}r=2\sqrt{2}r$

thus, correct explanation

1322021685_c6.JPG

Edge length=a, Radius=r

 $AC^{2}=AB^{2}+BC^{2}$

$(4r)^{2}=a^{2}+a^{2}=2a^{2}$

$4r=\sqrt{2}a\Rightarrow r=\frac{\sqrt{2}}{4}a=\frac{a}{2\sqrt{2}}$

$\therefore  a=2\sqrt{2}r$

In ccp structure, the number of sphere is 4, 

Hence , volume of 4 spheres=  $4(\frac{4}{3}\pi r^{3})$

Total volume of unit cell= $a^{3}=(2\sqrt{2}r)^{3}$

% of packing efficiency= $\frac{volume. of 4 spheres}{ volume .of unit cell}$

=  $\frac{4(\frac{4}{3}\pi r^{3})}{(2(\sqrt{2}r))^{3}}\times100=74.05$%= 74%