Answer:
Option D
Explanation:
Oxidation at anode
$H_{2}(g) \rightarrow 2H^{+}(aq) +2e^{-}; E^{0}_{SHE}=0.00V$
Reduction at cathode
$M^{4+}(aq) +2e^{-}\rightarrow M^{2+}(aq):$
$E^{0}_{M^{4+}/M^{2+}}=0.151V$
$Net: M^{4+}(aq)+H_{2}(g)\rightarrow M^{2+}(aq)+2H^{+}(aq):$
$K= \frac{[M^{2+}][H^{+}]^{2}}{[M^{4+}]PH_{2}}(E^{0}_{cell}=0.151 V)$
$K= \frac{[M^{2+}]}{[M^{4+}]}$
$E_{cell}=E^{0}_{cell}-\frac{0.059}{2}\log K$
$0.092= 0.151_{}-\frac{0.059}{2}log \frac{[M^{2+}]}{[M^{4+}]}$
$0.059= \frac{0.059}{2}log 10^{x}$
$\therefore \log 10^{x}=2$
$\therefore x=2$