Answer:
Option A
Explanation:
As the balls keep on carrying charge form one plate to another, current will keep on flowing even in steady state. When at bottom plate, if all balls attain charge q,
$\frac{kq}{r}=V_{0}$
$(k= \frac{1}{4\pi\epsilon_{0}})$
$\Rightarrow q=\frac{V_{0}r}{k}$
Inside cyclinder, electric field,
$E= [ V_{0}-(-V_{0})]h=2V_{0}h.$
$\Rightarrow$ Acceleration of each ball,
$a=\frac{qE}{m}=\frac{2hr}{km}.V_{0}^{2}$
$\Rightarrow$ Time taken by balls to each other plate,
$t=\sqrt{\frac{2h}{a}}=\sqrt{\frac{2h.km}{2hrV_0^2}}=\frac{1}{V_{0}}\sqrt{\frac{km}{r}}$
If there are n balls,
then Average current,
$i_{av}=\frac{nq}{t}=n\times \frac{V_{0}r}{k}\times V_{0}\sqrt{\frac{r}{km}}$
$\Rightarrow i_{av}\propto V_{0}^{2}$