Answer:
Option C
Explanation:
Force on block along slot=$m\omega^{2}r$
$=ma=m(\frac{vdv}{dr})$
$\int_{0}^{v}vdv =\int_{R/2}^{r}\omega^{2} rdr$
$\Rightarrow\frac{v^{2}}{2}=\frac{\omega^{2}}{2}(r^{2}-\frac{R^{2}}{4})$
$v=\omega \sqrt{r^{2}-\frac{R^{2}}{4}}=\frac{\text{d}r}{\text{d}t}$
$\Rightarrow \int_{R/4}^{r} \frac{\text{d}r}{\sqrt{r^{2}-\frac{R^{2}}{4}}}=\int_{0}^{t}\omega dt $
$ln[\frac{r+\sqrt{r^{2}-\frac{R^{2}}{4}}}{\frac{R}{2}}$
- $ln[\frac{\frac{R}{2}and+\sqrt{\frac{R^{2}}{4}-\frac{R^{2}}{4}}}{\frac{R}{2}}]=\omega t$
$\Rightarrow r+\sqrt{r^{2}-\frac{R^{2}}{4}}=\frac{R}{2}e^{\omega t}$
$\Rightarrow r^{2}-\frac{R^{2}}{4}=\frac{R^{2}}{4}e^{2\omega t}+r^{2}-2r\frac{R}{2}e^{\omega t}$
$\Rightarrow r=\frac{\frac{R^{2}}{4}e^{2\omega t}+\frac{R^{2}}{4}}{Re^{\omega t}}=\frac{R}{4}(e^{\omega t}+e^{-\omega t})$