Answer:
Option D
Explanation:
For Lens
$\frac{1}{v}-\frac{1}{u}=\frac{1}{f}\Rightarrow v=\frac{uf}{u+f}$
$v=\frac{(-50)(30)}{-50+30}=75cm$
For Mirror
$\frac{1}{v}+\frac{1}{u}=\frac{1}{f}\Rightarrow v=\frac{u f}{u-f}$
$\Rightarrow v=\frac{(\frac{25\sqrt{3}}{2})(50)}{\frac{25\sqrt{3}}{2}-50}=\frac{-50\sqrt{3}}{4-\sqrt{3}}cm$
$m=-\frac{v}{u}=\frac{h_{2}}{h_{1}}$
$\Rightarrow h_{2}=-[\frac{\frac{-50\sqrt{3}}{4-\sqrt{3}}}{\frac{25\sqrt{3}}{2}}]\frac{25}{2}\Rightarrow h_{2}=\frac{+50}{4-\sqrt{3}}$
The x-coordinate of the images
$=50-v \cos 30+h_{2} \cos 60 \approx 25$
The v-coordinate of the images
$=v\sin 30+h_{2}\sin60 \approx 25\sqrt{3}$