Answer:
Option D
Explanation:
$\log_{2}\frac{P_{1}}{P_{0}}=1$
Therefore $\frac{P_{1}}{P_{2}}=2$
According Stefan's law $p\proptoT$
$\frac{P_{2}}{P_{1}}=\left(\frac{T_{2}}{T_{1}}\right)^{4}=\left(\frac{2767+273}{487+273}\right)^{4}=4^{4}$
$\frac{P_{2}}{P_{1}}=\frac{P_{2}}{2P_{0}}=4^{4}$
$\Rightarrow \frac{P_{2}}{P_{0}}=2\times 4^{4}$
$\log_{2}\frac{P_{2}}{P_{0}}=\log_{2}[2\times 4^{4}]$
$=\log_{2}2+\log_{2}4^{4}$
$1+\log_{2}2^{8}=1+8=9$