Answer:
Option A,B,D
Explanation:
$r=\alpha t^{3}\hat{i}+\beta t^{2}\hat{j}$
$v=\frac{\text{d}r}{\text{d}t}=3\alpha t^{2}\hat{i}+2\beta t\hat{j}$
$a=\frac{\text{d}^{2}}{\text{d}t^{2}}=6\alpha t\hat{i}+2\beta \hat{j}$
At t=1 s,
(a) $v=3\times \frac{10}{3}\times 1\hat{i}+2\times 5\times 1\hat{j}$
$=(10\hat{i}+10\hat{j})m/s$
(b) $\hat{L}=\hat{r}\times \hat{p}$
$\left(\frac{10}{3}\times 1\hat{i}+5\times 1\hat{j}\right)\times 0.1(10\hat{i}+10\hat{j})$
$=\left(-\frac{5}{3}\hat{k}\right)Nms$
(c) $F=ma$
$=m\times \left(6\times \frac{10}{3}\times 1\hat{i}+2\times 5\hat{j}\right)$
$=(2\hat{i}+\hat{j})N$