Answer:
Option A,D
Explanation:
Case 1
Using lens formula
$\frac{1}{60}+\frac{1}{30}=\frac{1}{f}$
$\Rightarrow \frac{1}{f}=\frac{1}{60}+\frac{2}{60}$
$\Rightarrow f=20 cm $
Further $\frac{1}{f_{1}}=(n-1)\left(\frac{1}{R}-\frac{1}{\infty}\right)$
$f_{1}=\frac{R}{n-1}=+20 cm $
Case 2
Using mirror formula
$\frac{1}{10}-\frac{1}{30}=\frac{1}{f_{2}}$
$\frac{3}{30}-\frac{1}{30}=\frac{1}{f_{2}}=\frac{2}{30}$
$f_{2}=15=\frac{R}{2} \Rightarrow R=30$
$\frac{R}{n-1}=+20 cm = \frac{30}{n-1}$
$\Rightarrow 2n-2 = 3$
$\Rightarrow f_{1}=+20 cm$
Refractive index of lens is 2.5. Radius of curvature of convex surface is 30 cm. Faint image is erect and virtual. Focal length of lens is 20 cm .