Answer:
Option A
Explanation:
Applying Snell's law at M,
$n=\frac{\sin \alpha}{\sin r_{1}}\Rightarrow\sqrt{2}=\frac{\sin 45^{0}}{\sin r_{1}}$
$\sin r_{1} = \frac{\sin 45^{0}}{\sqrt {2}}=\frac{1/ \sqrt{2}}{\sqrt{2}}=\frac{1}{2}$
$r_{1}=30^{0}$
$\sin \theta_{c} =\frac{1}{n}=\frac{1}{\sqrt{2}}\Rightarrow\theta_{c}=45^{0}$
Let us take r2=θc=450 for just satisfying the condition of TIR
In ΔPNM, θ+90+r1+90-r2=1800 or θ=150