Answer:
Option A
Explanation:
Given,
tan−1y=tan−1x+tan−1(2x1−x2)
where |x|<1√3
⇒ tan−1y=tan−1{x+2x1−x21−x(2x1−x2)}
[∴tan−1x+tan−1y=tan−1(x+y1−xy)
x>0, y>0,xy<1]
= tan−1(x−x3+2x1−x2−2x2)
tan−1y=tan−1(3x−x31−3x2)
⇒ y=3x−x31−3x2
Aliter
|x|<1√3⇒−1√3<x<1√3
Let x=tanθ
⇒ −π6<θ<π6
∴ tan−1y=θ+tan−1(tan2θ)
= θ+2θ=3θ
⇒ y=tan3θ
⇒ y=3tanθ−tan3θ1−3tan2θ
⇒ y=3x−x31−3x2