Answer:
Option A
Explanation:
According to the given information.
the figure should be as follows.
Let the height of tower =h
In $\triangle EDA$,
$\tan 30^{0}=\frac{ED}{AD}$
$\frac{1}{\sqrt{3}}=\frac{ED}{AD}=\frac{h}{AD}$
$\Rightarrow$ $AD =h\sqrt{3}$
In $\triangle EDB$,
$\tan 45^{0}=\frac{h}{BD}\Rightarrow BD=h$
$\triangle EDC$
$\tan 60^{0}=\frac{h}{CD}\Rightarrow CD=\frac{h}{\sqrt{3}}$
Now, $\frac{AB}{BC}=\frac{AD-BD}{BD-CD}$
$\Rightarrow$ $\frac{AB}{BC}=\frac{h\sqrt{3}-h}{h-\frac{h}{\sqrt{3}}}$
$\Rightarrow$ $\frac{AB}{BC}=\frac{h(\sqrt{3}-1)}{\frac{h(\sqrt{3}-1)}{\sqrt{3}}}$
$\Rightarrow$ $\frac{AB}{BC}=\frac{(\sqrt{3}-1)}{(\sqrt{3}-1)}\times \sqrt{3}$
$\Rightarrow$ $\frac{AB}{BC}=\frac{\sqrt{3}}{1}$
$\therefore$ AB:BC= $\sqrt{3}:1$