1)

If 12 identical  balls are to be placed in 3 identical boxes, then the probability  that one of the boxes contains exactly 3 balls, is


A) $\frac{55}{3}\left(\frac{2}{3}\right)^{11}$

B) $\frac{55}{3}\left(\frac{2}{3}\right)^{10}$

C) $220\left(\frac{1}{3}\right)^{12}$

D) $22\left(\frac{1}{3}\right)^{11}$

Answer:

Option A

Explanation:

 There seems to be ambiguity in the question. It should  be mentioned that boxes are different and one particular  box has 3 balls

  Then , number of ways=    $\frac{^{12}C_{3}\times 2^{9}}{3^{12}}$

           =  $\frac{56}{3}\left(\frac{2}{3}\right)^{11}$

 According to the question,

              $\frac{^{3}C_{1}\times ^{12}C_{3}2^{9}-^{3}C_{2}^{12}C_{3}^{9}C_{3}+\frac{12!\times3!}{3!3!6!3!}}{3^{12}}$