Processing math: 11%


1)

The equation of the plane containing the line 2x-5y+z=3, x+y+4z=5  and parallel  to the plane x+3y+6z=1 is


A) 2x+6y+12z=13

B) x+3y+6z=-7

C) x+3y+6z=7

D) 2x+6y+12z=-13

Answer:

Option C

Explanation:

 Let equation of plane  containing the line 2x-5y+z=3  and x+y+4z=5 be

   (2x5y+z3)+λ(x+y+4z5)=0

(2+λ)x+(λ5)y+(4λ+1)z35λ=0      ........(i)

 This plane is parallel to the plane

 x+3y+6z=1

     \frac{2+\lambda}{1}=\frac{\lambda-5}{3}=\frac{4\lambda+1}{6}

 On taking first wo equalities , we get

                   6+3\lambda=\lambda-5

\Rightarrow                 2\lambda=-11

\Rightarrow            \lambda=-\frac{11}{2}

On taking last two equalities , we get 

                          6\lambda-30=3+12\lambda

\Rightarrow   -6\lambda=33

\Rightarrow     \lambda=-\frac{11}{2}

 So, the equation of required  plane is

  \left(2-\frac{11}{2}\right)x+\left(\frac{-11}{2}-5\right) y+\left(-\frac{44}{2}+1\right) z-3+5\times \frac{11}{2}=0

   \Rightarrow             -\frac{7}{2}x-\frac{21}{2}y-\frac{42}{2}z+\frac{49}{2}=0

   \Rightarrow   x+3y+6z-7=0