Answer:
Option C
Explanation:
Let equation of plane containing the line 2x-5y+z=3 and x+y+4z=5 be
(2x−5y+z−3)+λ(x+y+4z−5)=0
⇒(2+λ)x+(λ−5)y+(4λ+1)z−3−5λ=0 ........(i)
This plane is parallel to the plane
x+3y+6z=1
∴ \frac{2+\lambda}{1}=\frac{\lambda-5}{3}=\frac{4\lambda+1}{6}
On taking first wo equalities , we get
6+3\lambda=\lambda-5
\Rightarrow 2\lambda=-11
\Rightarrow \lambda=-\frac{11}{2}
On taking last two equalities , we get
6\lambda-30=3+12\lambda
\Rightarrow -6\lambda=33
\Rightarrow \lambda=-\frac{11}{2}
So, the equation of required plane is
\left(2-\frac{11}{2}\right)x+\left(\frac{-11}{2}-5\right) y+\left(-\frac{44}{2}+1\right) z-3+5\times \frac{11}{2}=0
\Rightarrow -\frac{7}{2}x-\frac{21}{2}y-\frac{42}{2}z+\frac{49}{2}=0
\Rightarrow x+3y+6z-7=0