Answer:
Option C
Explanation:
Let equation of plane containing the line 2x-5y+z=3 and x+y+4z=5 be
(2x−5y+z−3)+λ(x+y+4z−5)=0
⇒(2+λ)x+(λ−5)y+(4λ+1)z−3−5λ=0 ........(i)
This plane is parallel to the plane
x+3y+6z=1
∴ 2+λ1=λ−53=4λ+16
On taking first wo equalities , we get
6+3λ=λ−5
⇒ 2λ=−11
⇒ λ=−112
On taking last two equalities , we get
6λ−30=3+12λ
⇒ −6λ=33
⇒ λ=−112
So, the equation of required plane is
(2−112)x+(−112−5)y+(−442+1)z−3+5×112=0
⇒ −72x−212y−422z+492=0
⇒ x+3y+6z-7=0