Answer:
Option D
Explanation:
Given equation of the line is
$\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$ = $\lambda$ (say)......(i)
and equation of plane is
x-y+z=16 ...........(ii)
Any point on the line (i) is
$(3\lambda+2,4\lambda-1,12\lambda+2)$
Let this point be point of intersection of line and plane
$\therefore$ $(3\lambda+2)-(4\lambda-1)+(12\lambda+2)=16$
$\Rightarrow$ $11\lambda+5=16$
$\Rightarrow$ $11\lambda=11$
$\Rightarrow$ $\lambda=1$
$\therefore$ Point of intersection is (5,3,14).
Now , distance between the points (1,0,2) and (5,3,14)
$= \sqrt{(5-1)^{2}+(3-0)^{2}+(14-2)^{2}}$
$=\sqrt{16+9+144}=\sqrt{169}=13$