Answer:
Option D
Explanation:
Central Idea. Any point on the parabola $x^{2}=8y$ is (4t,2t2) Point P divides the line segment joining of O(0,0) and
Q (4t,2t2 ) in the ratio 1:3, Apply the section formula for internal division.
Equation of parabola is $x^{2}=8y$ .............(i)
Ler any point Q on the parabola (i) is (4t, 2t2 )
Let P (h,k) be the point which divides the line segment joining (0,0) and ( 4t, 2t2) in the ratio 1;3
$\therefore$ $h=\frac{1\times4t+3\times0}{4}$
$\Rightarrow $ $ h=t$
and $k=\frac{1\times 2t^{2}+3\times 0}{4d}$
$\Rightarrow $ $k=\frac{t^{2}}{2}$
$\Rightarrow $ $k=\frac{1}{2}h^{2}$
$\Rightarrow $ 2k=h2 $\Rightarrow $ 2y= $x^{2}$, which is required locus