Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

 Let O be the vertex and Q be any point on the parabola   x2=8y. If the point P divides the line segment OQ internally in the ratio 1:3, then the locus of P is


A) x2=y

B) y2=x

C) y2=2x

D) x2=2y

Answer:

Option D

Explanation:

 Central Idea.    Any point on the parabola   x2=8y   is (4t,2t2) Point P divides the line segment joining of O(0,0) and

Q (4t,2t2 ) in the ratio 1:3, Apply the section formula for internal division.

 Equation of parabola is   x2=8y           .............(i)

 Ler any point  Q on the parabola (i) is   (4t, 2t2  )

 Let P (h,k)  be the point which divides the line segment joining (0,0) and ( 4t, 2t2)  in the ratio 1;3

432021911_m3.JPG

   h=1×4t+3×04

      h=t

 and    k=1×2t2+3×04d

           k=t22

       k=12h2

      2k=h2    2y=  x2, which is required locus