Processing math: 100%


1)

 The number of common tangents to  the circles   x2+y24x6y12=0  and x2+y2+6x+18y+26=0  is


A) 1

B) 2

C) 3

D) 4

Answer:

Option C

Explanation:

Central Idea:

  Number of common tangents depend on the position of the circle with respect to each other.

  (i) If circles touch externally       C1 C2  =r1+r2   , 3 common tangents

  (ii)  If circles touch internally     C1 C2  =r2 -r1 , 1 common integer

   (iii) If circles do not touch each other, 4 common tangents

 Given equations of circles are

      x2+y24x6y12=0      ......(i)

      x2+y2+6x+18y+26=0     .......(ii)

  Centre of circle (i) C1   (2,3) and radius 

                           = 4+9+12=5(r1)    (say)

 Centre of circle (ii) is C2  (-3,-9)  and radius

                     =9+8126=8(r2)               (say)

Now, C1 C2=   (2+3)2+(3+9)2

     C1C2=52+122

      C1C2=25+144=13

       r1+r2=5+8=13

  Also, C1 C2  = r1 +r2

  Thus, both circles touch each other externally. Hence there are three common tangents