1)

The number of points having both coordinates as integers that lie in the interior of the triangle with vertices (0,0),(0,41) and (41,0). is


A) 901

B) 861

C) 820

D) 780

Answer:

Option D

Explanation:

Required points (x,y) are such that is satisfy  x+y <41

   and    x>0,y>0

   Number of positive integral solution of the  equation x+y+k=41 will be number of integral coordinates in the bounded region.

332021286_m19.JPG

  $\therefore$   Total number of integral  coordinates

        $=^{41-1}C_{3-1}=^{40}C_{2}=\frac{40!}{2!38!}=780$

  Alter

 Consider the following figure.

332021790_m28.JPG

Clearly, the number of requires points

            = 1+2+3+.......+39

    $=\frac{39}{2}(39+1)=780$