Answer:
Option C
Explanation:
Given differentail equation is
$(x\log x)\frac{\text{d}y}{\text{d}x}+y=2x \log x,$
$\Rightarrow $ $\frac{\text{d}y}{\text{d}x}+\frac{y}{x\log x}=2$
This is a linear differential equation.
$\therefore$ $IF=e^{\int_{}^{} \frac{1}{x log x}dx}=e^{\log(\log x)}=\log x$
Now, the solution of given differential equation is given by
$y. \log x=\int_{}^{} \log x.2dx$
$\Rightarrow y. \log x=2\int_{}^{} \log x.dx$
$\Rightarrow y. \log x=2[x \log x-x]+c$
At X=1, c=2
$\Rightarrow$ $y. \log x=2[x \log x-x]+2$
At x=e,
y= 2(e-e)+2 $\Rightarrow y=2$