Answer:
Option C
Explanation:
Central Idea.
Apply the property ∫baf(x)dx=∫baf(a+b−x)dx and then add.
Let I=∫42logx2logx2+log(36−12x+x2)dx
I=∫422logx2logx+log(6−x)2dx
=∫422logxdx2[logx+log(6−x)]
⇒I=∫42logxdx[logx+log(6−x)] ......(i)
⇒I=∫42log(6−x)log(6−x)+logxdx .......(ii)
[∴∫baf(x)dx=∫baf(a+b−x)dx]
On adding Eqs .(i) and (ii) , we get
2I=∫42logx+log(6−x)logx+log(6−x)dx
2I=∫42dx=[x]42
⇒2I=2⇒I=1