1)

Let f(x) be a polynomial of degree four having extreme values at x=1, amd x=2 . If   $\lim_{x \rightarrow 0}\left[1+\frac{f(x)}{x^{2}}\right]=3$   , then f(2) is equal to


A) -8

B) -4

C) 0

D) 4

Answer:

Option C

Explanation:

Central Idea. Any function have extreme values (maximum or minimum) at its critical points , where f " (x)=0

   Since , the function have extreme values at x=1 and x=2

 $\therefore$     $f'(x)=0$  = 0 at x=1 and x=2

$\Rightarrow$    $f'(1)=0$  and $f'(2)=0$

 Also it is given that

             $\lim_{x \rightarrow 0}\left[ 1+\frac{f(x)}{x^{2}}\right]=3$

  $\Rightarrow$                         $1+\lim_{x\rightarrow 0}\frac{f(x)}{x^{2}}=3$

    $\Rightarrow$   $\lim_{x\rightarrow 0}\frac{f(x)}{x^{2}}=2$

   $\Rightarrow$  f(x) will be of the form

                               $ax^{4}+bx^{2}+2x^{2}$

                  [  $\therefore$ f(x)  is four degree polynomial]

   Let     $f(x)=ax^{4}+bx^{2}+2x^{2}$

  $\Rightarrow$     $f'(x)=4ax^{3}+3bx^{2}+4x$

  $\Rightarrow$     $f'(1)=4a+3b+4=0$            ........(i)

            and       $f'(2)=32a+12b+8=0$

$\Rightarrow$    8a+3b+2=0           ......(ii)

   On solving Eqs(i) and (ii) , we get

            $a=\frac{1}{2},b=-2$

 $\therefore$                  $f(x)=\frac{x^{4}}{2}-2x^{3}+2x^{2}$

  $\Rightarrow$       f(2)= 8-16+8=0